Understanding planet formation through asteroseismology

Kepler & K2 SciCon V

Vincent Van Eylen

Russell Fellow – Princeton University
Asteroseismology utilizes the full Kepler time series and can be used to gain deep knowledge of a star and its planets.

Kepler-410, Van Eylen et al. 2014
Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:

1. there would be a lack of planets around $2 \, R_\oplus$
2. this ‘radius valley’ would be a function of orbital period

 e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014
Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:

1. there would be a lack of planets around 2 R_{\oplus}
2. this ‘radius valley’ would be a function of orbital period

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014
Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:

1. there would be a lack of planets around $2 \ R_\oplus$
2. this ‘radius valley’ would be a function of orbital period

 Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Early Kepler
25% precision

e.g. Huber et al. 2014
Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:

1. there would be a lack of planets around $2\ R_⊕$
2. this ‘radius valley’ would be a function of orbital period

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

e.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014
Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:

1. there would be a lack of planets around $2 \, R_{⊕}$
2. this ‘radius valley’ would be a function of orbital period

E.g. Lopez & Fortney 2013, Owen & Wu 2013, Jin et al. 2014

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

Early Kepler
25% precision

Spectroscopy & Gaia
<10% precision

e.g. Huber et al. 2014
Fulton et al. 2017
Berger et al. 2018
Fulton & Petigura 2018
Five years ago, photo-evaporation models predicted that some close-in planets would lose their entire atmosphere, and:

1. there would be a lack of planets around $2 \, R_\oplus$
2. this ‘radius valley’ would be a function of orbital period

Observing this valley and matching it to models requires highly precise stellar (and planet transit!) parameters.

- **Early Kepler**
 - 25% precision
 - e.g. Huber et al. 2014

- **Spectroscopy & Gaia**
 - <10% precision
 - Fulton et al. 2017
 - Berger et al. 2018
 - Fulton & Petigura 2018

- **Asteroseismology**
 - 2% precision
 - Silva Aguirre et al. 2015
 - Van Eylen et al. 2018, 2019
How does photo-evaporation lead to a radius valley?

Envelop Mass Fraction

Mass-loss timescale [Myr]

Stable to Evaporation

Completely Stripped

Unstable to Evaporation

Planet Radius [R_c]

Initial

(a)

(b)

(c)

(d)

Combined

Owen & Wu 2017
How does photo-evaporation lead to a radius valley?

Owen & Wu 2017
How does photo-evaporation lead to a radius valley?

Owen & Wu 2017
How does photo-evaporation lead to a radius valley?

Owen & Wu 2017
How does photo-evaporation lead to a radius valley?

- Small atmospheres are unstable to evaporation
- Small envelope mass = large envelope size

Owen & Wu 2017
The radius valley is a function of orbital period (incident flux) and divides planets with atmosphere from stripped cores.

Lopez & Fortney 2013

See also e.g. Owen & Wu 2013, Jin et al. 2014
The radius valley is a function of orbital period (incident flux) and divides planets with atmosphere from stripped cores.

Lopez & Fortney 2013

See also e.g. Owen & Wu 2013, Jin et al. 2014
The radius valley is a function of orbital period (incident flux) and divides planets with atmosphere from stripped cores.

Lopez & Fortney 2013

See also e.g. Owen & Wu 2013, Jin et al. 2014
The radius valley is a function of orbital period (incident flux) and divides planets with atmosphere from stripped cores.

Lopez & Fortney 2013

See also e.g. Owen & Wu 2013, Jin et al. 2014
The radius valley is a function of orbital period (incident flux) and divides planets with atmosphere from stripped cores.

Lopez & Fortney 2013
Owen & Wu 2013

See also e.g. Jin et al. 2014
The radius valley is a function of orbital period (incident flux) and divides planets with atmosphere from stripped cores.

Lopez & Fortney 2013
See also e.g. Jin et al. 2014

Owen & Wu 2013
The location of the radius valley depends on orbital period and core composition.
The location of the radius valley depends on orbital period and core composition.

See also poster by James Owen!
The location of the radius valley depends on orbital period and core composition.

See also poster by James Owen!
Setting out to observe this valley, early Kepler results look rather disappointing.
Setting out to observe this valley, early Kepler results look rather disappointing.
Precise stellar and planetary parameters bring the radius valley into view.

See also talks BJ Fulton & Travis Berger (Gaia), and Cintia Fernanda Martinez!
Precise stellar and planetary parameters bring the radius valley into view.

We did a very careful transit modeling because we used transit durations to constrain orbital eccentricities for the same sample (Van Eylen et al. 2019).
We did a very careful transit modeling because we used transit durations to constrain orbital eccentricities for the same sample.

\[\sigma_{\text{multi}} = 0.083^{+0.015}_{-0.020} \text{ and } \sigma_{\text{single}} = 0.32 \pm 0.06 \]
We find a **very empty radius valley.**
We find a **very empty radius valley.**

Using support vector machines, we measure its precise **location & slope:**

\[
\log_{10}(R) = -0.09^{+0.02}_{-0.04} \log_{10}(P) + 0.37^{+0.04}_{-0.02}.
\]
Comparing the slope to photo-evaporation models reveals core composition (+ evaporation physics).

Van Eylen et al. 2018
Comparing the slope to photo-evaporation models reveals core composition (+ evaporation physics).

- Slope consistent with photo-evaporation predictions
- Location matches terrestrial core composition (in situ formation?)
- Valley’s emptiness suggests homogeneous core composition
Comparing the slope to photo-evaporation models reveals core composition (+ evaporation physics).

- Slope consistent with photo-evaporation predictions
- Location matches terrestrial core composition (in situ formation?)
- Valley’s emptiness suggests homogeneous core composition
- Alternatives. Slope inconsistent with late gas poor formation, but perhaps core-powered mass-loss: see talk Hilke Schlichting and poster Akash Gupta
Precise asteroseismic stellar radii detect an empty radius gap.

The radius gap has a negative slope consistent with photo-evaporation models.

Terrestrial cores, in situ formation

Homogeneous core composition

Future:

- Mean densities of planets? Function of stellar type? → TESS

Challenge: find a planet firmly inside the gap

See also orbital eccentricities → Van Eylen+ 2019