The Rotational Phase Distribution of Stellar Flares on M dwarfs with K2

Lauren Doyle

Gavin Ramsay and Gerry Doyle

Northumbria University
NEWCASTLE
England, UK

Armagh Observatory & Planetarium
EXPLORING THE COSMOS SINCE 1790
Northern Ireland, UK
M dwarfs

- Stars after M4 spectral type (<0.3Msun) become fully convective;
- However, late M dwarfs do show activity!
- They **must** generate a magnetic field in a different way to the Sun.

- < 0.5Msun
- 2400K - 3800K
- 70% stars
Flare Rotation and Dependency on Phase

Clear rotation modulation caused by the presence of a long lived star spot.

Flares present here when the star spot is not visible.

Ramsay et al (2013)
Stellar Flares Using K2: Part 1

- K2 short cadence (1min) data on 31 M dwarfs.
- Stellar flares are used as a proxy for stellar activity.
- Calculate Rotation Periods.
- Identified flares using FBEYE (Davenport et al. 2014).
- Multi-wavelength fluxes from PanStarrs.
- Flare Energies:

\[E_{\text{flare}} = L_{\text{star}} \times t \]

Doyle et al. (2018)
Stellar Flares Using K2: Part 1

- Large flares seen at maximum amplitude of rotational modulation.
- Flares are seen at **ALL** rotational phases.

NONE of the stars in our sample showed a preference for rotational phase.

Where do the flares originate?

1. Binary system?
2. Orbiting planets?
3. Polar spots?
4. Multiple spot locations?

V497 Tau

Doyle et al. (2018)
An additional 18 M dwarf flare stars from Campaigns 10 – 18.

Doyle et al. (in prep)
Stellar Flares Using K2: Part 2

- Computed a simple χ^2 test to determine if the distribution of flares was random.
- Split flares into low and high energy with a cut off of 10^{32} erg.
- Again none of our sample show any preference for rotational phase.
Flaring Variability

- Handful of stars observed in multiple Campaigns.
- Allow us to investigate the flaring variability in these particular stars.
- Over time both stars have shown changes in the range of flares observed with K2!

Doyle et al. (in prep)
First Results from TESS

- Sample of 150 low mass stars from Sectors 1 - 3 with 2-min cadence - 3 times larger than our K2 sample.
- Observation length of 27 days as opposed to ~70 d.
- TESS is less sensitive to lower energy flares.

Doyle et al. (in prep)
First Results from TESS

- Similar analysis to K2 sample and preliminary results show the flares are randomly distributed.
- Individually, NONE of the stars show any preference for rotational phase even when split by spectral type or rotation period.

Doyle et al. (in prep)
Conclusions

• There is no correlation between the rotational phase/ energy or number of flares. All stars show significant rotational modulation due to a star spot so, this is a surprise.

• A number of stars in our sample are rapidly rotating (< 0.3 day) but produce low number of flares. These stars would prove interesting targets for spectropolarimetry observations.

• With TESS data being released every few months it will increase the sample of low mass stars observed in 2-min cadence to continue to answer the question of the origins of stellar flares on these stars.