A Dynamical View of Star-disk Interaction Processes in the Lagoon Nebula with Kepler/K2

Laura Venuti
with Ann Marie Cody, Steve B. Howell

NASA Ames Research Center

Image credits: ESO/VPHAS+ team
The Lagoon Nebula cluster

- Complex HII region and star-forming site (Tothill 2008)
- Contains the few Myr-old open cluster NGC 6530 ($d = 1325 \text{ pc}; \text{age} \sim 2 \text{ Myr}$)
- Census from photometric surveys (IR, UV, X-rays), spectroscopy (Hα), astrometry (Gaia)
- Estimated PMS population of 2500 – 3000 stars (Damiani et al. 2019)
- Disk fraction \sim50% (Prisinzano et al. 2007, 2019)
- Numerous OB population (60 – 70 objects)

Image credits: NASA, ESA, STScI
The Lagoon Nebula cluster: observations

- **K2 Campaign 9 observations:**
 - light curves extracted for 323 confirmed members;
 - hundreds of potential additional members in the “superstamp” region
 (Cody et al. 2018)

- **Auxiliary observations:**
 - u,g,r,i,Hα light curves with the VLT Survey Telescope (VST/OmegaCam)
 [17 epochs distributed over 3.5 weeks, simultaneous with K2]
 - Hα spectral time series with VLT/FLAMES [17 epochs, simultaneous with K2]
 - Spitzer/IRAC 3.6 μm and 4.5 μm monitoring [17 days, simultaneous with K2]
 - Gemini/DSSI speckle imaging acquired so far for 78 members
The K2 sample in the Lagoon

- Current K2 sample of PMS stars in the Lagoon Nebula: 323 (118 with disks, 205 without disks)
- As many additional objects identified in superstamp region (extraction in progress)
- Current spectral type coverage down to M0-M1
- Projected completeness limit ~M0

Gray histogram from data in Damiani et al. (2019)
Time behavior of young stars with disks in the Lagoon Nebula

- **burster**
- **dipper**
- **stochastic**
- **(quasi-)periodic**
- **eclipses + star-disk interaction**
- **transient behavior**
Time behavior of young stars with disks in the Lagoon Nebula

Preliminary rates of occurrence of different variability types:

- **bursters** -> 7%
- **stochastics** -> 11%
- **dippers** -> 11%
- **(multi-)periodic** -> 15%
- **quasi-periodic** -> 27%
- **non-classified** -> 29%

Compared to:
- ρ Ophiuchi (K2 Campaign 2)
- Upper Scorpius (K2 Campaign 2)
- NGC 2264 (CoRoT campaign)

[Codi & Hillenbrand (2018)]

<table>
<thead>
<tr>
<th>Morphology class</th>
<th>Oph [1-3 Myr]</th>
<th>Sco [5-10 Myr]</th>
<th>Sco/Oph composite (%)</th>
<th>NGC 2264 [3-5 Myr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Bursters</td>
<td>14^{+5}_{-3}</td>
<td>13^{+3}_{-2}</td>
<td>14^{+2}_{-2}</td>
<td>13^{+3}_{-2}</td>
</tr>
<tr>
<td>Aperiodic-symmetric</td>
<td>12^{+4}_{-3}</td>
<td>6^{+2}_{-1}</td>
<td>8^{+2}_{-2}</td>
<td>13^{+3}_{-2}</td>
</tr>
<tr>
<td>(stochastic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quasi-periodic symmetric</td>
<td>20^{+3}_{-4}</td>
<td>29^{+3}_{-3}</td>
<td>26^{+2}_{-2}</td>
<td>17 ± 3</td>
</tr>
<tr>
<td>Aperiodic dippers</td>
<td>9^{+5}_{-3}</td>
<td>18^{+1}_{-2}</td>
<td>16^{+2}_{-2}</td>
<td>11^{+3}_{-2}</td>
</tr>
<tr>
<td>Quasi-periodic dippers</td>
<td>14^{+5}_{-3}</td>
<td>18^{+3}_{-2}</td>
<td>17^{+2}_{-2}</td>
<td>10.5^{+3}_{-2}</td>
</tr>
<tr>
<td>Periodic symmetric</td>
<td>6^{+2}_{-2}</td>
<td>7^{+2}_{-2}</td>
<td>7^{+1}_{-1}</td>
<td>3^{+4}_{-1}</td>
</tr>
</tbody>
</table>

Other Categories

Multiperiodic	7^{+4}_{-2}	4^{+2}_{-1}	5^{+2}_{-1}	1^{+2}_{-1}
Long timescale	8^{+2}_{-2}	0^{+0}_{-2}	3^{+1}_{-1}	1^{+1}_{-1}
Unclassifiable	2^{+3}_{-0}	0^{+2}_{-0}	1^{+1}_{-1}	11^{+3}_{-2}
Non-variable	6^{+4}_{-2}	3^{+2}_{-1}	4^{+1}_{-1}	19 ± 3
Link between variability behavior and star-disk interaction

Different light curve types match predictions for distinct star-disk interaction modes:

[McGinnis et al. 2015]
- (quasi-)periodic/dipper -> stable, funnel-flow accretion combined with geometric effects

[Stauffer et al. 2014, 2016]
- burster/stochastic -> unstable accretion proceeding in intense, short-lived bursts

[see also the cases of ρ Oph and Upper Sco, A.M. Cody’s talk]
Link between variability behavior and star-disk interaction: the Lagoon case

- Optical colors trace the photospheric emission
- Excess emission above the photospheric level, prominent in the UV, is characteristic of accretors

Preliminary indications:
- Objects with irregular light curves more likely to be found at large UV excesses (64% below the dashed threshold)
- Periodic variables more likely to be found along the color locus of young stars without disks (82% above the threshold)

\[u, g, i \text{ photometry from VPHAS+ (Drew et al. 2014)} \]
Link between variability behavior and star-disk interaction: the Lagoon case

- Near-infrared colors trace the presence of dust in the innermost regions of the circumstellar disk

Preliminary indications:

- Objects with irregular light curves tend to exhibit larger IR excesses than other types of disk-bearing stars
- Periodic variables tend to exhibit IR colors closer to the photospheric emission level traced by disk-free objects

\(J, H, K_S \) photometry from the 2MASS survey (Skrutskie et al. 2006)
Summary and future steps

- The Lagoon Nebula offers a very young, rich population in a crowded environment with tens of massive objects

 key to probe the impact of stellar mass, multiplicity, and environment on the dynamics of star-disk evolution

- The K2 light curves reveal a variety of photometric behaviors, possibly connected with distinct scenarios of star-disk interaction and different properties of the circumstellar environment

Next steps:
- colors signatures associated with the brightness variations
- variability type as a function of stellar mass/spectral type
- variability type in relation to binarity

Thank you