ASASSN-18bt/SN 2018oh: A Type Ia Supernova with a Two-Component Rising Light Curve Seen in K2 Observations

Tom Holoien
Carnegie Observatories

Kepler & K2 Science Conference V
March 5, 2019

Papers: Shappee, Holoien et al. 2019;
Dimitriadis et al. 2019a,b; Li et al. 2019;
Tucker et al. 2019
• Survey began in 2013
• Current: 5 units (20 telescopes), \(\sim 6500 \) images per night, \(\sim 40,000 \) sq. degrees per night
• Limiting mag of \(g \sim 18.5 \)
• Fully automated data reduction pipeline
• Discoveries announced publicly
• Light curves available at https://asas-sn.osu.edu//
Type Ia “Progenitor Problem”

Single Degenerate (SD): WD accretes from MS or RG companion to reach Chandrasekhar Mass

Double Degenerate (DD): WD-WD merger after angular momentum loss through gravitational waves

Image credit: STFC/Dave Hardy

Image credit: GSFC/Dana Berry
ASASSN-18bt/SN 2018oh

- Discovered by ASAS-SN on 2018-02-04
- First K2 detection \sim 8 days prior
- $B_{\text{max}} = 14.31$, $d = 47.7$ Mpc

Shaphee et al. (2019)
ASASSN-18bt: Early Flux Excess

Shappee et al. (2019)
ASASSN-18bt: Early Flux Excess

SN 2018oh
- K2 Raw Data
- K2 Binned Data (12h)

Dimitriadis et al. (2019a)
ASASSN-18bt: Early Flux Excess

Shappee et al. (2019)
ASASSN-18bt: Early Flux Excess

Shappee et al. (2019)
Flux Excess: SD Companion Interaction

- Shock-interaction between SN ejecta and non-degenerate companion generates excess flux (Kasen 2010)
- Best fit to $\sim 10 R_{\text{Sun}}$

Dimitriadis et al. (2019a)
Flux Excess: Off-Center Nickel Distribution

- If nickel is mixed into the outer layers of the ejecta it can generate excess flux (Piro & Morozova 2016, Contreras 2018)
- Requires non-smooth distribution, highly concentrated at surface

Contreras et al. (2018) Shappee et al. (2019)
Flux Excess: Other Possibilities

• Sub-Chandrasekhar "double-detonation": He shell detonates and ignites explosion of CO core (e.g., Woosley & Weaver 1994, Noebauer et al. 2017)
• Interaction with nearby CSM (e.g., Prio & Morozova 2016)

Dimitriadis et al. (2019a) Shappee et al. (2019)
Summary

- ASASSN-18bt was the brightest and nearest SN observed by Kepler
- Early flux excess in light curve can be attributed to a variety of different physical processes, including interaction between the SN ejecta and a non-degenerate companion or a non-smooth, surface-concentrated distribution of nickel
- Nebular phase observations should help constrain these models.
Thank You

ASAS-SN and T. W.-S. Holoien acknowledge funding from: the Gordon and Betty Moore Foundation, the National Science Foundation, the Mt. Cuba Astronomical Foundation, the Center for Cosmology and AstroParticle Physics (CCAPP) at OSU, the Robert Martin Ayers Sciences Fund, and the US Department of Energy Computational Science Graduate Fellowship