MASSIVE: Massive stAr aSteroSeIsmology, Variability, and Evolution with K2: O-type stars in Field 0

Our goal is to perform in-depth ensemble asteroseismology and variability studies of the most massive stars, with the aim to cover the full evolutionary path from the birthline to the supernova explosion. While the nominal Kepler mission already implied a revolution in stellar physics for solar-type stars and red giants, it was not possible to perform high-precision studies of massive OB stars or of pre-main sequence (pre-MS) stars because such targets were not sufficiently available in Kepler’s original FoV, while CoRoT only observed a few of them, several of which during less than one month. We shall remedy this lack of data for the metal factories of the Universe, for which stellar evolution theory is least adequate while its impact on life cycles and on chemical enrichment of galaxies is dominant. The science cases that we shall address were already extensively described in the white paper by Aerts et al. (2013, arXiv:1309.3042) taking the young open cluster NGC 2244 as a case study, but this cluster cannot be observed due to the restriction of the pointing of K2 to the ecliptic. Instead, we seek to observe stars in the fields of K2 to meet the same aims but for various metallicities. This requires that we consider different classes of stars to cover the entire evolutionary path. For each sub-class of stars, we recall briefly the science case in 7 sub-proposals, including the target list for each of them.

Based on the experience of Aerts’ and Neiner’s teams, who were responsible for the CoRoT OB star target selection, ground-based follow-up and CoRoT data exploitation (cf. ADS since 2009), we have carefully selected the best K2 targets for our aims, as summarized in the Table below for Field 0. Each of the targets was assigned a priority according to its rarity and expected S/N following simulations with our software (Marcos-Arenal et al., 2014, submitted to A&A; in the data files, a blank line was introduced to separate stars of subsequent priority). We plan to adopt the same strategy for all future K2 fields until we have light curves of sufficient quality for at least 100 members in each sub-class, to guarantee that we can place the stars in evolutionary sequences, for various masses and metallicities. For the rare objects, we request all accessible stars. Spectroscopic and spectro-polarimetric follow-up will be performed with the NARVAL, ESPADONS, and HERMES instruments for the stars brighter than 11; for fainter targets we shall apply for competitive time at ESO/IAC/OHP, where the MASSIVE consortium has high success rates. The lead PIs indicated per sub-class are members of KASC WG3, while Alecian, Debosscher, De Cat, Degroote, Marcos-Arenal, Mathis, Thou, and Triana deliver expertise in magnetism as well as in data and theoretical modelling. The MASSIVE consortium has large expertise in analysing Kepler and CoRoT data.

![Table](image)

O-type stars have hardly been measured in high-precision space photometry, with the exception of 6 stars monitored for 3 weeks by CoRoT. All these 6 cases revealed previously unknown and unanticipated variability, which cannot be explained by current stellar models (Degroote et al. 2010, A&A, 519, A38; Briquet et al. 2011, A&A, 527, A112; Blomme et al. 2011, A&A, 533, A4; Mahy et al. 2011, A&A, 519, A38). Unfortunately, seismic interpretations at the level of requiring improvement of the models were only possible for HD46202, due to, among other things, the limited frequency precision. A key hypothesis which was posed recently is that almost all O-type stars result from binary interaction (Sana et al., 2012, Sci, 337, 444). This, together with the suggestion that sub-surface convection could be held responsible for variability of stochastic nature (Cantiello et al., 2009, A&A, 499, 297), as recently detected in the bright *Kepler* GO early-B massive binary target V380 Cyg (Tkachenko et al., 2014, MNRAS, in press) implies that the potential to unravel the structure and evolution of the most massive stars in the Universe is high. We thus aim to assemble and interpret high-precision K2 photometry and ground-based spectroscopy of an extensive sample of single and binary O-type stars to assess the hypothesis of binary formation and evolution, and to perform seismic modelling of those stars, including the evaluation of the effect of a radiation-driven wind with its accompanying mass loss and mass transfer on the mode excitation and on stellar evolution. Given the scarcity of such objects, we request to observe all those that are visible in K2, in long cadence mode (14 in Field 0).